Go to content

7. References

Andersen, Kristoffer Steen, Dockweiler, S., Klinge Jacobsen, H., 2019. Squaring the energy efficiency circle: evaluating industry energy efficiency policy in a hybrid model setting. Squaring the energy efficiency circle: evaluating industry energy efficiency policy in a hybrid model setting. 
Andersen, Kristoffer S., Termansen, L.B., Gargiulo, M., Ó Gallachóirc, B.P., 2019. Bridging the gap using energy services: Demonstrating a novel framework for soft linking top-down and bottom-up models. Energy 169, 277–293. https://doi.org/10.1016/j.energy.2018.11.153 
Balyk, O., Andersen, K.S., Dockweiler, S., Gargiulo, M., Karlsson, K., Næraa, R., Petrović, S., Tattini, J., Termansen, L.B., Venturini, G., 2019. TIMES-DK: Technology-rich multi-sectoral optimisation model of the Danish energy system. Energy Strategy Reviews 23, 13–22. https://doi.org/10.1016/j.esr.2018.11.003 
Berrittella, M., Bigano, A., Roson, R., Tol, R.S.J., 2006. A general equilibrium analysis of climate change impacts on tourism. Tourism Management 27, 913–924. https://doi.org/10.1016/j.tourman.2005.05.002 
Bjertnæs, G.H., Tsygankova, M., Martinsen, T., 2013. Norwegian climate policy reforms in the presence of an international quota market. Energy Economics 39, 147–158. 
Boccanfuso, D., Savard, L., Estache, A., 2013. The Distributional Impact of Developed Countries’ Climate Change Policies on Senegal: A Macro-Micro CGE Application. Sustainability 5, 2727–2750. https://doi.org/10.3390/su5062727 
Böhringer, C., 1998. The synthesis of bottom-up and top-down in energy policy modeling. Energy Economics 20, 233–248. https://doi.org/10.1016/S0140-9883(97)00015-7 
Böhringer, C., Rutherford, T.F., 2009. Integrated assessment of energy policies: Decomposing top-down and bottom-up. Journal of Economic Dynamics and Control 33, 1648–1661. https://doi.org/10.1016/j.jedc.2008.12.007 
Braendle, T., 2021. Introductory note on integrating climate into macroeconomic modelling:  Drawing on the Danish experience (PARIS COLLABORATIVE ON GREEN BUDGETING No. GOV/PGC/SBO(2021)9). OECD. 
Bye, B., Fæhn, T., Rosnes, O., 2018. Residential energy efficiency policies: costs, emissions and rebound effects. Energy 143, 191–201. 
Bye, B., Kaushal, K.R., Rosnes, O., Turner, K., Yonezawa, H., 2021. The road to a low emission society: Costs of
interacting climate regulations, in: Discussion Papers 972. Statistics Norway. 
Dahl, G., Kirk, J.S., 2022. Analyse af CO2-afgift. Dreamgruppen. 
Danmarks Statistik, 2023. Datagrundlag til GrønREFORM [WWW Document]. URL https://www.dst.dk/da/Statistik/emner/miljoe-og-energi/groent-nationalregnskab/energi-og-emissionsregnskaber/datagrundlag-til-groenreform (accessed 4.16.23). 
Dreamgroup, 2023. DREAM | Publications [WWW Document]. Publications. URL http://dreamgroup.dk/publications/ (accessed 4.16.23). 
Elliott, J., Foster, I., Kortum, S., Munson, T., Pérez Cervantes, F., Weisbach, D., 2010. Trade and Carbon Taxes. American Economic Review 100, 465–469. https://doi.org/10.1257/aer.100.2.465 
Fæhn, T., Gulbrandsen, M.U., Lindegaard, A., 2010. Hva vil Norges klimakur koste? Artikkel, Samfunnsøkonomen 5/2010, 4-15. 
Fæhn, T., Isaksen, E.T., 2016. Diffusion of Climate Technologies in the Presence of Commitment Problems. The Energy Journal 37. 
Fæhn, T., Isaksen, E.T., Rosnes, O., 2013. Kostnadseffektive tilpasninger til togradersmålet i Norge og EU fram mot 2050 (No. Rapporter 2013/39). SSB. 
Fæhn, T., Kaushal, K.R., Storrøsten, H., Yonezawa, H., Bye, B., 2020. Abating greenhouse gases in the Norwegian non-ETS sector by 50 per cent by 2030 - A macroeconomic analysis of Climate Cure 2030 (No. Reports 2020/23). Statistics Norway. 
Flam, H., Hassler, J., Silbye, F., Sørensen, P.B., Hansen, L.G., Liski, M., Vehviläinen, I., Ollikainen, M., Golombek, R., Hoel, M., Fæhn, T., Nøstbakken, L., Von Below, D., Carlén, B., Mandell, S., Otto, V., Ferguson, S., 2023. Nordic
Economic Policy Review 2023: EU versus National Climate Policies in the Nordics. Nordic Council of Ministers. https://doi.org/10.6027/nord2023-001 
Fortes, P., Pereira, R., Pereira, A., Seixas, J., 2014. Integrated technological-economic modeling platform for energy and climate policy analysis. Energy 73, 716–730. https://doi.org/10.1016/j.energy.2014.06.075 
Honkatukia, J., Alimov, N., Huovari, J., Ruuskanen, O.-P., Lehtomaa, J., 2019. Alueellisen taloustiedon tietokanta (sarjajulkaisu). Valtioneuvoston kanslia. 
Kaushal, K., Yonezawa, H., 2022. Increasing the CO2 tax towards 2030. Impacts on the Norwegian economy and CO2 emissions (No. Reports 2022/43). SSB. 
Kiuila, O., Rutherford, T.F., 2013. The cost of reducing CO2 emissions: Integrating abatement technologies into economic modeling. Ecological Economics 87, 62–71. https://doi.org/10.1016/j.ecolecon.2012.12.006 
Koljonen, T., Honkatukia, J., Maanavilja, A., Ruuskanen, O.-P., Similä, L., Soimakallio, S., 2021. Carbon-neutral Finland 2035 – climate and energy policy actions and impacts (HIISI) : Synthesis report – Conclusions and recommendations. 
Krook-Riekkola, A., Berg, C., Ahlgren, E., Söderholm, P., 2013. Challenges in Soft-Linking: The Case of EMEC and TIMES-Sweden, Working Paper No. 133. National Institute of Economic Research, Stockholm, Sweden. 
Krook-Riekkola, A., Berg, C., Ahlgren, E.O., Söderholm, P., 2017. Challenges in top-down and bottom-up soft-linking: Lessons from linking a Swedish energy system model with a CGE model. Energy 141, 803–817. https://doi.org/10.1016/j.energy.2017.09.107 
Lankoski, J., Ollikainen, M., 2011. Biofuel policies and the environment: Do climate benefits warrant increased production from biofuel feedstocks? Ecological Economics 70, 676–687. https://doi.org/10.1016/j.ecolecon.2010.11.002 
Martinsen, T., 2011. Introducing technology learning for energy technologies in a national CGE model through soft links to global and national energy models. Energy Policy 39, 3327–3336. https://doi.org/10.1016/j.enpol.2011.03.025 
Nelson, G.C., Valin, H., Sands, R.D., Havlík, P., Ahammad, H., Deryng, D., Elliott, J., Fujimori, S., Hasegawa, T., Heyhoe, E., Kyle, P., Von Lampe, M., Lotze-Campen, H., Mason d’Croz, D., van Meijl, H., van der Mensbrugghe, D., Müller, C., Popp, A., Robertson, R., Robinson, S., Schmid, E., Schmitz, C., Tabeau, A., Willenbockel, D., 2014. Climate change effects on agriculture: Economic responses to biophysical shocks. Proceedings of the National Academy of Sciences 111, 3274–3279. https://doi.org/10.1073/pnas.1222465110
Östblom, G., Berg, C., 2006. The EMEC model: Version 2.0, Working Paper No. 96. National Institute of Economic Research, Stockholm, Sweden. 
Otto, V.M., Below, D. von, 2023. The Environmental Medium-Term Economic  (EMEC) Model: Version 4 (WORKING PAPER NO. 156). National Institute of Economic Research (NIER). 
Paltsev, S., Reilly, J.M., Jacoby, H.D., Gurgel, A.C., Metcalf, G.E., Sokolov, A.P., Holak, J.F., 2007. Assessment of U.S. Cap-and-Trade Proposals. Working Paper Series. https://doi.org/10.3386/w13176 
Rimmer, M., Dixon, P., Honkatukia, J., Tapia, C., Gassen, N.S., 2023. Industry, employment, distributional and macro-economic effects in the Nordic countries of their greenhouse policies [WWW Document]. Presented during the 26th Annual Conference on Global Economic Analysis (Bordeaux, France), Presented during the 26th Annual Conference on Global Economic Analysis (Bordeaux, France). URL http://www.gtap.agecon.purdue.edu/resources/res_display.asp?RecordID=6885 
Termansen, L.B., Dockweiler, S., Hegelund, A.Z., Gersfelt, B., Næraa, R., Andersen, K.S., 2019. What is IntERACT - Introduction (WORKING PAPER NO. 01). Working Paper Series represent work in progress,  and do not necessarily represent those of the Danish Energy Agency or policies of the Danish  Ministry of Climate, Energy and Building. 
United Nations Development Programme, 2016. Climate Change and Labor: Impacts of Heat in the Workplace. 
van der Mensbrugghe, D., 2013. Modeling the Global Economy – Forward-Looking Scenarios for Agriculture. Handbook of Computable General Equilibrium Modeling 1, 933–994. 
Wilson, D., Swisher, J., 1993. Exploring the gap: Top-down versus bottom-up analyses of the cost of mitigating global warming. Energy Policy, Policy modelling for global climate change 21, 249–263. https://doi.org/10.1016/0301-4215(93)90247-D