Figure 20 illustrates a Lorenz curve for all Nordic municipalities in 2022, calculated based on mean equivalised household income. The Lorenz curve shows a fairly balanced distribution of the indicator, reflecting a relatively equitable territorial structure. On average, mean equivalised household income at the municipal level appears to be evenly distributed across the territory. However, it is important to highlight that this metric can conceal significant intra-municipal disparities between income groups. Nevertheless, the Lorenz curve remains a fundamental metric for calculating many of the inequality measures described below.
8.1.2. An overview of widely used inequality indices
There are literally hundreds of indicators of inequality. In this section we review a selection of those that are most commonly used in social research:
Gini coefficient is the average difference between all possible pairs of incomes in the distribution, expressed as a proportion of total income. The Gini coefficient can be represented using the Lorenz curve; the coefficient is equal to the area below the line of perfect equality, formally:
Ricci-Schutz coefficient (also called Pietra ratio, Hoover index or “Robin Hood index”) is the relative mean deviation of the population. It can be interpreted as the proportion of income that has to be transferred from those above the mean to those below the mean in order to achieve an equal distribution. Graphically, the Ricci-Schutz coefficient is equivalent to the maximum vertical distance between the Lorenz curve and the line of equal incomes, formally:
Squared coefficient of variation: The coefficient of variation is a standardised measure of dispersion of a probability or frequency distribution. It shows the extent of variability of data in a sample in relation to the mean of the population. When applied to income distribution, the CV is smaller when income is distributed more equally between individuals. The coefficient of variation is a highly consistent and mathematically traceable indicator. However, unlike the Gini coefficient, it does not have an upper bound, making interpretation and comparison somewhat more difficult. Moreover, the two components of the coefficient of variation (the mean and the standard deviation) may be greatly influenced by extreme low or high income values.